
An Optimised Design for Streaming Media in Cloud Desktop System

Wei-Chen Ma

Southwest Jiaotong University, Chengdu, Sichuan,China

mwcnmgg@163.com

Abstract—As the earliest and most classic cloud desktop

protocol, VNC has been limited in its usage scenarios and

further development due to its lazy update mechanism and

outdated coding methods, which fail to meet the requirements

for video playback and other demands. This paper proposes

an optimization approach for VNC systems by dynamically

adjusting the parameters based on network latency to control

the minimum communication time between the client and

server, allowing continuous data updates during this period.

To address the issues related to outdated coding methods and

low bandwidth requirements, a novel algorithm is introduced

that utilizes motion vectors to differentiate between high and

low motion areas in video frames. High motion areas are

encoded and decoded using H.264, while low motion areas

maintain the coding and decoding method of the RFB

protocol. This approach not only ensures lower bandwidth

usage but also provides a satisfactory user experience.

Keywords- cloud desktop system; vnc; lazy update;video
coding; high motion; rfb;

1. INTRODUCTION

With the continuous advancement of computer

technology and the relentless progress in hardware

capabilities, the demand for remote desktop technology has

witnessed a significant surge [1]. The proliferation of remote

work has established it as a prevalent and widely adopted

mode of work worldwide. This discernible upswing in remote

work requirements has compelled numerous companies and

organizations to embrace remote desktop technology as a

means to facilitate their employees' remote or work-from-

home setups. The remote desktop protocol is at the core of

remote desktop technology, which serves as the linchpin for

seamless connectivity and interaction. Among the well-

known remote desktop protocols in existence, namely RDP,

SPICE, and VNC, each possesses its distinct design

principles, features, and suitability for specific scenarios [2,3].

VNC, being one of the pioneering remote desktop

systems, comprises three integral components: VNC Server,

VNC Client, and the RFB protocol acting as the

communication conduit between them. The VNC Server

harnesses the actual computational resources of the host

machine to perform an array of tasks encompassing

computation, rendering, compression, and transmission of

image data. On the other hand, the VNC Client assumes the

responsibility of receiving the transmitted image data,

decoding the associated information, and rendering it locally

for display. The RFB protocol governs the seamless exchange

of communication and interaction between the VNC Server

and the VNC Client [4]. Leveraging this architectural

framework, VNC empowers users to remotely access and

assume control over remote computers via lightweight thin

clients across the network, thereby enabling users to

seamlessly tap into remote resources across disparate

operating systems and devices, catering to their fundamental

office requirements. However, the evolving nature of remote

work demands transcends the realm of simplistic office tasks,

extending into complex realms such as comprehensive office

workflows, entertainment, education, and more. VNC in its

standalone form falls short of meeting these evolving

demands, leading to the attention of computer professionals

being drawn towards augmenting and elevating the

capabilities of VNC systems.

2. RELATED WORK

2.1. Update Mechanism

By default, VNC uses a lazy update polling mechanism,

as shown in Figure 1. In this mechanism, the server only

responds when it receives a request from the client, which

prevents unnecessary updates. However, this approach can

have a significant impact on-screen updates in high-latency

networks or scenarios with high update requirements. The

problems caused by the lazy update mechanism are described

in [5]. Limited bandwidth or unstable network conditions can

lead to increased latency and response time. In reference [6],

C. Taylor and J. Pasquale applied a message accelerator that

acts as an intermediary between the VNC client and server,

forwarding the information exchange between them. The

accelerator requests updates more frequently from the server

and forwards the screen update information to the client. In

reference [7], a server-push mode is proposed as an

alternative to the client-pull mode.

2.2. Encoding Algorithms

As for the encoding methods in VNC systems, RRE,

CoRRE, ZRLE, and Hextile are commonly used. These

encoding methods are lossless compression techniques with

low compression ratios, which are not suitable for video

transmission. In reference [8], a two-dimensional graphic

terminal interface encoding method is mentioned, which

achieves a better compression ratio and decoding efficiency

when processing plain text files in word applications.

However, this algorithm has a low compression ratio when

processing video images. To address the limitations of VNC

systems in handling video, gaming, and other scenarios, a

new encoding method is proposed as a replacement for the

386

2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR)

979-8-3503-0247-9/23/$31.00 ©2023 IEEE
DOI 10.1109/ISSSR58837.2023.00063

low-compression-rate encoding methods in the RFB protocol,

as discussed in reference [9]. However, this approach

imposes a high network load as the VNC system continuously

uses the new encoding method at any given time. In reference

[10], the concept of dividing video frames into high-motion

and low-motion regions is introduced, and different encoding

methods are applied separately to each region. [11] proposes

an integrated remote control model that incorporates

audio/video isolation technology, aiming to support separate

multi-A/V sessions and improve the quality of multimedia

applications.

Overall, these studies propose various approaches to

enhance the encoding and transmission efficiency of VNC

systems, considering factors such as network conditions,

compression ratio, and the distinction between high-motion

and low-motion regions in video frames.

3. SYSTEM DESIGN

3.1. Prototype System Implementation

The implementation of a prototype serves primarily as a

reference to evaluate the proposed methods. The prototype is

built on a desktop-level operating system platform such as

Windows 10. It is developed based on the open-source "Tight

VNC," which does not include the H.264 codec by default.

Therefore, it requires porting the open-source audio and video

codec FFmpeg to the system. In the subsequent text, the H.264

algorithm will be referenced, so a brief introduction to H.264

is provided. H.264 is a widely used video compression

standard. It was jointly developed by the International

Telecommunication Union (ITU) and the International

Organization for Standardization (ISO) and was released in

2003. H.264 aims to provide efficient video compression

while maintaining high video quality. The H.264 algorithm

achieves compression by exploiting both spatial and temporal

redundancies in video data. Spatial compression reduces

redundancy within individual frames by using techniques such

as intra-prediction, transform coding, and quantization. Intra-

prediction predicts pixel values within a frame based on

neighboring pixels, transform coding converts the predicted

values into frequency domain coefficients, and quantization

further reduces their precision, achieving compression.

Temporal compression leverages redundancies between

consecutive frames through inter-prediction, motion

compensation, and variable-length coding. Inter prediction

analyzes motion between frames and predicts pixel values by

referencing previously encoded frames. Motion compensation

compensates for the predicted motion by transmitting only the

differences between predicted and actual frames. Variable-

length coding efficiently encodes the residual data. H.264 also

incorporates advanced features like multiple reference frames,

adaptive quantization, and deblocking filtering to enhance

compression efficiency and video quality. It has become the

most widely adopted video compression standard due to its

ability to deliver high-quality video at lower bit rates, making

it suitable for various applications such as video streaming,

broadcasting, video conferencing, and storage [12].

3.2. Video Codec Integration

The VNC server is typically a thin client, and the

resource usage of the VNC server is strictly limited. When

playing videos or games, the screen image updates rapidly.

At this time, the complexity and compression ratio of the

encoding method used by the server to encode the image

information becomes important factors affecting the

efficiency of the VNC system. The original VNC encoding

method has low complexity but also a low compression ratio.

This results in network congestion when using low

compression ratio data in the mentioned scenarios. Therefore,

it is advisable to consider both encoding time and

compression ratio when selecting a new compression

algorithm. According to the data in [13], it is easy to choose

the H.264 encoding algorithm. This algorithm occupies the

least amount of bitrate at the same YUV-PSNR and achieves

the highest YUV-PSNR at the same bitrate. As mentioned in

the previous section, FFmpeg is integrated into the proposed

VNC system, and this encoder provides various encoding

methods, including H.264, for future use.

3.3. Optimized Update Mechanism

In contrast to the original VNC system, the proposed

system addresses the issues caused by the lazy update polling

mechanism with a new update mechanism, as shown in

Figure 2. Both the VNC Server and VNC Client are equipped

with buffers. Once the server receives a

FramebufferUpdateRequest from the client, it clears the

buffer and sends a predetermined duration of update data

until the timer expires or the buffer becomes full. The server

continuously sends data from the buffer to the client until the

connection is terminated or the buffer is empty.

To further optimize the system, a module can be added

to the server to periodically obtain network latency

information after establishing the VNC connection. Based on

this latency information, the preset time for updates can be

dynamically adjusted. When the preset time is set close to the

network latency, the system can achieve better performance.

By implementing this new update mechanism and

dynamically adjusting the preset time based on network

latency, the system aims to overcome the limitations of the

default VNC lazy update polling mechanism. It ensures more

timely and efficient updates between the VNC Server and

Client, resulting in improved user experience and reduced

impact from high-latency network conditions.

3.4. Block-based motion estimation

Motion estimation is a critical technology in video

coding used to estimate the motion information between

video frames [14]. Its main purpose is to determine the

displacement of each pixel between consecutive frames,

providing a basis for subsequent video compression. One

commonly used method for motion estimation is block-based

motion estimation, which involves dividing the current frame

387

into several blocks and searching for the best matching

position in the reference frame for each block. This process

calculates the motion vectors between blocks and offers

various search algorithms.

Figure 1. VNC lazy update mechanism

Figure 2. Optimized update mechanism

Block-based motion estimation is a simple, yet effective

technique widely applied in video coding. Although not

supported by the VNC system, it has provided inspiration for

subsequent algorithm proposals. The functionality can be

achieved through targeted development. For example, in the

VNC system, consecutive image frames are typically

differentially encoded by comparing and transmitting only

the pixels that have changed from the previous frame. Based

on this approach, the algorithmic idea of motion estimation

can be introduced. By comparing each frame with the

previous frame and calculating pixel differences, a motion

estimation algorithm can estimate the motion vectors of each

block, representing the block's displacement in the image.

The specific utilization will be discussed in the next section.

3.5. Detection and Separate Transmission of High/Low

Motion Regions

A. Detection of High/Low Motion Regions
First, upon receiving the FramebufferUpdateRequest at

the server side and starting the processing of the screen data,

the current frame is divided into several equally sized small

blocks. The size of the blocks is typically determined by a

trade-off between specific application requirements, desired

precision, and computational complexity. The previous frame

is chosen as the reference frame for comparison.

For each block in the current frame, a search is performed

in the reference frame to find a similar block that best matches

it. The matching process involves comparing the blocks using

a metric such as the sum of squared differences (SSD) to

determine the best-matched block. The motion vector is then

computed based on the displacement between the current

block and its best-matched block in the reference frame. The

calculation of motion vectors is as follows:

 1

 indicates the coordinates of a pixel in the current block

 indicates the corresponding pixel in the

reference block after applying the displacement (dx, dy).

 2

“argmin” is a function that indicates the value of the

independent variable that minimizes a function and achieves

the minimum value.

B. Partition Encoding and Sending
After obtaining the motion vectors, the high and low

motion regions can be determined based on the magnitude of

the corresponding block's motion vector. The high motion

regions are then encoded using the H.264 encoder, while the

low motion regions are encoded using the default VNC

encoder. The encoded data is stored in their respective buffers

for data transmission.

For the low motion regions, the data is transmitted to the

client using the traditional RFB protocol to ensure good

quality. As for the high motion regions, they are sent to the

client using the RTP protocol, aiming for low bandwidth

consumption while maintaining decent video quality. On the

client side, two corresponding receiving and decoding

modules are set up to handle their respective tasks. The

received data is decoded, merged with other images, and

placed in the data buffer, awaiting display on the client side.

388

4. EXPERIMENT AND RESULT ANALYSIS

4.1. Test Environment

The devices include two computers, one serving as the

server and the other as the client. The table 1 below displays

the specific configurations of each computer.

Table 1. Configurations of each computer

cpu cores main

frequency
ram gpu

server AMD

Ryzen 5
2600

6 3.4ghz 4g
GTX1060

client Intel e3 4 3.2ghz 4g
GTX880M

During the experiment, the MSI Afterburner and

RivaTuner Statistics Server programs were used to monitor

various parameters of the server and client, with a particular

focus on CPU usage. The main objective of this study is to

enhance the capabilities of the newly designed optimized

VNC remote desktop system in handling image processing

tasks such as videos and games. This includes conducting

basic performance testing of the system. The key

performance indicators for the testing include the CPU usage

and network bandwidth utilization of both the server and

client during the operation of the VNC system, particularly

during video playback.

In the experiment, three application scenarios were set

up: The first scenario involved pure text processing tasks, such

as working with Word documents. The second scenario

focused on playing videos in a non-fullscreen mode, where the

non-video portion still contained textual information. The

third scenario involved playing videos in fullscreen mode.

Finally, tests were conducted to measure the CPU usage and

network bandwidth for each of these three scenarios.

4.2. Result and Analysis

A Result

Figure 3 Usage of CPU in the server

Figure 4 Usage of CPU in client

Figure 5 Bandwidth utilization

B Analysis
Based on the results of the aforementioned experiment,

analyzing Figure 3 reveals that as the complexity of the

screen image increases, the CPU usage of any VNC system

also increases. Moreover, in the proposed system, the CPU

usage is 10% higher in subsequent scenarios. A similar trend

can be observed on the client side, as shown in Figure 4. The

proposed system consumes more CPU resources on the client

side.

Through careful analysis of this phenomenon, we can

easily identify the reasons behind it. In the proposed system,

after receiving update requests, the server performs encoding

and transmission within a predetermined time frame.

Additionally, before encoding, the server needs to calculate

the high and low motion regions, which increases the CPU

resource usage on the server side. Consequently, the client

continuously receives and decodes data, leading to an

increase in CPU usage on the client side as well.

Although the CPU usage has increased, it is evident from

Figure 5 that the proposed system has reduced bandwidth

usage. This is because as the screen image becomes more

complex and changes occur more rapidly, more areas are

identified as high motion regions. The high motion regions

are encoded and decoded using the high compression ratio

H.264 algorithm. While this method consumes more CPU

389

resources, it significantly reduces the amount of data

transmitted, resulting in better bandwidth utilization

compared to the Tight VNC system.

5. CONCLUSION

This paper proposes an optimised idea and method based

on the disadvantages of the lazy update mechanism of the

VNC system, the unfavorable encoding method of the video

data, and the high bandwidth consumption of the

transmission of highly variable images. For the lazy update

mechanism, a parameter that is dynamically adjusted

according to the network delay is used to control the

minimum time for the client and server to communicate at

one time and to continuously update the data during this

period. For the VNC video transmission problem, a video

frame high and low motion area identification algorithm is

proposed. The algorithm distinguishes between high and low

motion zones of the current frame by calculating the modal

length of the motion vector. The high motion region is then

compressed using the H.264 coding of the integrated FFmpeg

codec, while the relatively low motion region is still

compressed and transmitted using the RFB protocol. In the

end, it was confirmed in the experiments that this method

would increase the CPU usage of the system to a certain

extent, both on the client side and on the server side. However,
in terms of bandwidth usage, it also achieves a maximum 25%

advantage over Tight VNC.

6. ACKNOWLEDGMENTS

This work was supported in part by the Fundamental

Research Funds for the Central Universities(Grant No.

2682022CX066 and the Science and Technology Research

and Development Plan of China Railway(Grant No.

N2022S006).

REFERENCES

[1] C. Xu, D. Li, W. E. Wong, and M. Zhao, “Service

caching strategy based on Edge Computing and

Reinforcement Learning,” International Journal of

Performability Engineering, vol. 18, no. 5, pp. 350–358,

2022.

[2] C. Miyachi. What is “Cloud”? it is time to update the

NIST definition?[J]. IEEE Cloud Computing, 2018, (3):

6-11.

[3] J. Pateria, L. Ahuja, and S. Som, “Critical path to place

decoys in Deception biota,” International Journal of

Performability Engineering, vol. 18, no. 12, pp. 854–

862, 2022.

[4] Zhu Yongqiang , Tang Xiong . Analysis and Research

on VNC-based Remote Desktop Transfer Protocol [J].

Computer System Applications Computer System

Applications,2016,25(11):284-287.

[5] Rao S S, Vin H M, Tarafdar A. Comparative evaluation

of server-push and client-pull architectures for

multimedia servers[J]. Proceedings of NOSSDAV’96,

1996: 45-48.

[6] Taylor C, Pasquale J. Improving video performance in

VNC under high latency conditions[C]//2010

international symposium on collaborative technologies

and systems. IEEE, 2010: 26-35.

[7] Wu Xiaoyu. Analysis of RFB protocol and video

playback performance improvement in VNC system [D].

Nankai University, 2008.

[8] Fei-Die Liang , Jin-Tao Li , Hong-Zhou Shi . Coding

methods in virtual network computing (VNC) protocols

[J]. Computer Applications,2004,24(6):93-95.

[9] D. De Winter, P. Simeons, L. Deboosere, F. De Turck, J.

Moreau, and B. Dhoedt, P. Demeester, “A Hybrid Thin

-Client Protocol for Multimedia Streaming and

Interactive Gaming Application” Proc. Int. Workshop on

Network and sOperating System Support for Digital

Audio and Video, Aug. 2006.

[10] Tan K J, Gong J W, Wu B T, et al. A remote thin client

system for real time multimedia streaming over

VNC[C]//2010 IEEE International Conference on

Multimedia and Expo. IEEE, 2010: 992-997.

[11] Nguyen, Tien-Dung, Seungun Choe, and Eui-Nam Huh.

"An efficient mobile thin client technology supporting

multi-sessions remote control over VNC." 2012 IEEE

International Conference on Computer Science and

Automation Engineering (CSAE). Vol. 3. IEEE, 2012.

[12] Bross, Benjamin, et al. "Developments in international

video coding standardization after avc, with an overview

of versatile video coding (vvc)." Proceedings of the

IEEE 109.9 (2021): 1463-1493.

[13] J. -R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan and T.

Wiegand, "Comparison of the Coding Efficiency of

Video Coding Standards—Including High Efficiency

Video Coding (HEVC)," in IEEE Transactions on

Circuits and Systems for Video Technology, vol. 22, no.

12, pp. 1669-1684, Dec. 2012, doi:

10.1109/TCSVT.2012.2221192.

[14] Bao, Wenbo, et al. "Memc-net: Motion estimation and

motion compensation driven neural network for video

interpolation and enhancement." IEEE transactions on

pattern analysis and machine intelligence 43.3 (2019):

933-948.

390

